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a b s t r a c t

There is ample evidence that urban trees benefit the physical, mental, and social health of urban resi-
dents. The environmental justice hypothesis posits that environmental amenities are inequitably low in
poor and minority communities, and predicts these communities experience fewer urban environmental
benefits. Some previous research has found that urban forest cover is inequitably distributed by race,
though other studies have found no relationship or negative inequity. These conflicting results and the
single-city nature of the current literature suggest a need for a research synthesis. Using a systematic
literature search and meta-analytic techniques, we examined the relationship between urban forest
cover and race. First, we estimated the average (unconditional) relationship between urban forest cover
and race across studies (studies ¼ 40; effect sizes ¼ 388). We find evidence of significant race-based
inequity in urban forest cover. Second, we included characteristics of the original studies and study
sites in meta-regressions to illuminate drivers of variation of urban forest cover between studies. Our
meta-regressions reveal that the relationship varies across racial groups and by study methodology.
Models reveal significant inequity on public land and that environmental and social characteristics of
cities help explain variation across studies. As tree planting and other urban forestry programs prolif-
erate, urban forestry professionals are encouraged to consider the equity consequences of urban forestry
activities, particularly on public land.

© 2017 Published by Elsevier Ltd.
1. Introduction

In the face of urbanization and global climate change, an inter-
national movement to “green” cities has emerged. This movement
has encouraged both metaphorical greening activities to reduce
consumption (e.g. energy efficiency improvements, public trans-
portation investments) and physical greening activities that culti-
vate urban vegetation. Prominent in this second set of activities are
city tree-planting initiatives that collectively aim to plant millions
of trees globally (such as MillionTreesNYC, [www.milliontreesnyc.o
rg; Fisher et al., 2015]).

Urban forestsdthe land in and around areas of intensive human
influence which is occupied by trees and associated natural re-
sources (definition modified from Strom, 2007) d provide many
benefits to the physical, mental, and social health of urban residents
(Haluza et al., 2014; Hartig et al., 2014; Lee and Maheswaran, 2011;
Westphal, 2003) and improve local environmental conditions
(Armson et al., 2012; Nowak et al., 2013; Zhang et al., 2012). In
. Watkins).
addition to their contributions to mitigating climate change
(Nowak, 1993), new planted trees promise to provide local benefits
to the communities in which they are planted. However, early ev-
idence cautions that urban forestry programs have the potential to
create or exacerbate inequity by planting in areas with higher
existing canopy cover, higher income (Donovan and Mills, 2014;
Locke and Grove, 2016), and with fewer minority residents
(Watkins et al., 2016). Even were these programs to plant in low-
income and minority neighborhoods, they might yield unin-
tended consequences such as ecological gentrificationdincreasing
property values and forcing low-income renters to relocate
(Dooling, 2009; Pearsall and Anguelovski, 2016).

Unequal access of low income and minority residents to urban
forests implies unequal access to the physical, mental, and social
health benefits that urban forests providedan environmental
injustice. Scholars who have empirically examined the relationship
between urban forest cover and race or ethnicity have found con-
flicting resultsdstudies have found positive, negative, and no
relationship between minority populations and urban forest cover
(Danford et al., 2014; Flocks et al., 2011). These studies tend to be of
a single city, however, potentially hindering the generalizability of
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results. In light of mixed findings, it is still unclear whether con-
cerns of systematic inequity are substantiated by the existing
research. Furthermore, there is little understanding of why we
observe mixed findings across studies. Do observed differences
across studies stem from differences between study sites (cities), or
do they stem from methodological choices?

To address these lingering questions, we conducted a meta-
analysis of the relationship between urban forest cover and race.
A companion paper examined the relationship between urban
forest cover and income (Gerrish and Watkins, 2017). We aggre-
gated information from existing studies to estimate the uncondi-
tional mean effect size (the average relationship) between urban
forest cover and race. The environmental justice (alternatively,
environmental racism) hypothesis predicts that people and com-
munities of color will have less access to environmental amenities;
in this case, it predicts that people of color will live in areas with
disproportionately low urban forest cover. While variation across
studies complicates the comparison of the existent literature, it
yields a rich opportunity for meta-analysis. We examined potential
explanations for variation across studies by controlling for char-
acteristics of the original studies, their empirical strategies, and
their study sites using meta-regression, a tool of meta-analysis.

A note about terminology in this paper: for simplicity, in this
paper we use urban forest cover as a catch-all term for a study's
measure of urban trees and herbaceous plants, regardless of how it
was operationalized in the original study. Many of the studies in
this meta-analysis drew indicators from Census data to measure
the percent of a population that is White, African American, His-
panic/Latinx (pronounced La-teen-ex), or another group. Studies
often referred to these as measures of race, although some
considered Hispanic an indicator of ethnicity. Given the complexity
of racial and ethnic identity and the simplicity of the census in-
dicators, this paper uses race to refer to a study's independent
variable, regardless of how the original study identified it.

Meta-analysis is particularly useful in the case of urban forest
equity because it can synthesize several literature that might not
otherwise interact. In addition to including studies that are
explicitly concerned with environmental justice and mapping and
estimating inequity, our meta-analysis captured studies that
described urban land use and land use change (Boone et al., 2010;
Grove et al., 2006, 2014), study environmental stewardship choices
by individuals (Grove et al., 2014; Pham et al., 2013) or public ser-
vants (Landry and Chakraborty, 2009), and advance methods for
measuring urban forest cover (Szantoi et al., 2008).

Of note, we are constrained in our ability to examine the
intersectionality of environmental inequity by the model specifi-
cations used in existing studies. We speak briefly to the inter-
sectionality of race and class in our models and discussion, but
acknowledge the limitations of this meta-analysis's contributions
to a critical approach to environmental justice in this vein (Pellow,
2016) (we again refer readers to a companion study on income,
Gerrish and Watkins, 2017). For example, a quantitative study
might interact income and race variables to explore whether one
variable moderates the other. Because the original studies in this
meta-analysis do not conduct such tests, we cannot examine these
relationships. Additionally, 35 of the 40 studies analyzed in this
study are from the United States; a lack of English-language studies
testing our hypotheses in other countries limits the generalizability
of this work outside of the US.

To our knowledge, no meta-analyses have been done on
municipal service provision equity and only one exists on envi-
ronmental justice and environmental hazards (Ringquist, 2005; see
also Mohai et al., 2009 for a review). Only a fewmeta-analyses have
been conducted on topics in urban greening, and most of them are
ecological studies; topics include amenity valuation (Brander and
Koetse, 2011), intra-urban biodiversity (Beninde et al., 2015), local
plant extinction (Duncan et al., 2011), organic material and envi-
ronmental outcomes (Scharenbroch, 2009), and street tree survival
(Roman and Scatena, 2011). Calls for synthesis of the environmental
justice literature in urban forestry across many cities have been
made (e.g. Frey, 2016).

This article is organized as follows: first we examine some of the
theoretical reasons why access to urban forest cover may vary by
race. Second, we explicate the literature search protocol, coding
process, inter-coder reliability checks, tests for publication bias, and
the methods for conducting meta-regressions. Third we examine
the results of meta-regressions. Finally we discuss the implications
for policy and research and conclude.

1.1. Understanding variation in urban forest cover

From the current literature, we hypothesized that estimates
have varied across studies for four reasons: methodological choices,
measurement choices for race, measurement choices for urban
forest cover, and characteristics of the study site such as climate.

1.2. Methodological choices

Ongoing discourse in the environmental justice and urban
forestry literature suggests differences in model selection and
specification might yield differences in findings. Three conversa-
tions are particularly prevalent: whether to estimate unconditional
or conditional effects, the importance of accounting for spatial
autocorrelation, and the extent towhich evidence of inequity varies
with the size of the unit of analysis (see Noonan, 2008 for a dis-
cussion of these concerns with respect to environmental hazards).

1.2.1. Control variables
Results are likely to vary with the inclusion of covariates in

regression models. It has become standard in the environmental
justice literature to control for potential confounders expected to
be related to both the outcome of interest and the environmental
justice indicator, and inclusion of covariates is one indicator of a
high study quality (Ringquist, 2005).

Including control variables allows authors to prevent spurious
conclusions. For example, scholars might include indicators of both
race and income in the same model (see Pham et al., 2012). This
strategy addresses an enduring question in inequities researchd-
whether inequity is about race or about class or both (Mohai et al.,
2009).

Moreover, urban forestry scholars use multiple covariates to
compare competing theories. Findings suggest that features of the
built environment such as terrain (Berland et al., 2015), street
characteristics (Pham et al., 2017), construction age (Pham et al.,
2017; Steenberg et al., 2015), vacant land (Nowak et al., 1996); or
available planting space (Shakeel, 2012) help to explain urban for-
est distribution, and might explain variation better than social
characteristics of a neighborhood (Berland et al., 2015; Pham et al.,
2017; although see Mel�endez-Ackerman et al., 2014 for contrasting
findings). Because features of the built environment are collinear
with socio-demographic characteristics, we expect studies that
control for built environment features to find weaker evidence of
race-based urban forest inequity.

1.2.2. Accounting for spatial autocorrelation
Researchers, particularly Geographers, argue that adjusting for

spatially correlated errors is critical for correctly estimating the
relationship between urban forest cover and sociodemographic
characteristics (more accurately, to correctly estimate standard
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errors) (e.g. Schwarz et al., 2015). According to Tobler's first law of
geographyd“everything is related to everything else, but near
things are more related than distant things”d neighboring
geographic units are likely more similar to each other than to more
distant geographic units (Chakraborty, 2011). Non-independence of
observations results in spatial error correlation, violating an ordi-
nary least squares (OLS) assumption. Spatial autoregressive models
(SAR) account for this autocorrelation by either introducing a
spatial lag term or correcting standard error calculations. These
strategies help capture unobserved historical and ecological factors
that drive spatial patterns (Pham et al., 2012). Studies that have
compared estimates from OLS and SAR models generally have
found that SAR models demonstrate less inequity than OLS models
(Schwarz et al., 2015).

1.2.3. Level of aggregation
Findings from environmental justice literature in other contexts

suggest that evidence of inequity can vary by the size of the unit of
analysis (Baden et al., 2007; Noonan, 2008; Ringquist, 2005; Tan
and Samsudin, 2017). Urban forestry studies have used a variety
of geographic units, including plots (Conway and Bourne, 2013),
parcels (Shakeel, 2012), census block groups (Landry and
Chakraborty, 2009; Schwarz et al., 2015) and census tracts
(Heynen et al., 2006; Jenerette et al., 2007). Evidence that results
vary with the level of aggregation would suggest that a seemingly
minor choice, often made for convenience, can impact conclusions.

1.3. Measurement

Meta-analysis allows us to determine whether estimates of
environmental inequity are sensitive to measurement choices
(Mohai and Saha, 2006 discussed this concern with respect to
environmental hazards). Some studies isolated individual groups
(e.g. African American, Asian). Others measured a disambiguated
minority population or the inverse, White population, or they
measured visible minority or the inverse (in Canadian studies, e.g.
Conway and Bourne, 2013). Studies measured urban forest cover in
various ways as well. Some only included trees (Conway and
Bourne, 2013), others trees and shrubs or woody vegetation
(Clarke et al., 2013), and finally all vegetation or greenness
(Jenerette et al., 2011; Szantoi et al., 2008, 2012; Tooke et al., 2010).

Urban forest cover data most commonly comes from on-the-
ground inventories or from satellite or aerial imagery, which is
then used to operationalize forest cover differently. For example,
some studies defined tree cover using the percent of land area that
is covered with tree cover. Others counted the number of trees per
unit area. Other studies measured vegetation using wavelength
intensity and the Normalized Difference Vegetation Index (NDVI)
(Szantoi et al., 2012). The use of differing measures may contribute
to variation in findings. However, few within-study comparisons of
measurement techniques exist (without also varying other study
characteristics). Conway and Bourne (2013) found some evidence
thatmeasurementmight contribute to differences across studies. In
their study, evidence of inequity varied across measures of canopy
cover, stem density, and species richness. Shakeel (2012) found
evidence that the relationship between urban forest cover and both
features of the built environment and management had different
directions when urban forest cover was measured as tree density
and canopy cover. Another study found no significant difference
across measures because no significant relationship was uncovered
(Mel�endez-Ackerman et al., 2014).

1.3.1. Domain
Urban trees grow on many types of land, including on
residential property, along streets, in parks, near streams or wa-
terways, and in abandoned lots. Some studies measured urban
forest cover on all land in a city (Schwarz et al., 2015), while others
restricted their study by looking at only urban forest cover on
residential land (Grove et al., 2014), in public right-of-ways (Landry
and Chakraborty, 2009), and in parks (Martin et al., 2004). Urban
forest distributionmight differ across these domains. For simplicity,
we will refer to land typesdincluding ecological, physical, and
political categorizationsdas the domain.

Urban forests in the United States are largely managed at the
municipal level (Profous and Loeb, 1990) and municipalities
determine the extent to which homeowners are responsible for the
trees in front of their property on public land (in some cities, res-
idents have sole responsibility for those trees; see Donovan and
Butry, 2010). In addition, public officials or contracted arborists
make many decisions related to urban forestry including where to
plant, maintain, and remove trees. Thus variation in inequity across
domains would illuminate drivers of inequity and appropriate
remedies. For example, a larger proportion of the trees on resi-
dential land have been planted, compared to other land-use types
(Nowak, 2012), and so evidence of inequity on residential land
would suggest tree planting as a driver and avenue for redress.

Previous studies offer some evidence about the distributional
results of municipal and nonprofit urban forestry programs.
Watkins et al. (2016) found that nonprofit tree-planting programs
were more likely to occur when the proportions of African Amer-
ican and Hispanic/Latinx residents were smaller in a neighborhood
(although they found a negative relationship between planting and
income) and another study found no relationship between tree
requests and the percent of neighborhood residents who were
White (Locke and Baine, 2015). If inequity is found to be higher on
public land than on private land (see Pham et al., 2012 for example),
it more directly implicates the behavior of public and nonprofit
actors. Policy levers to address inequity will vary depending on
whether inequity exists on public lands, private lands, or both.

1.4. Study sites

Previous inter-city research has found city-level characteristics
are related to urban environmental conditions, including urban
forest cover (Nowak et al., 1996). While single-city studies assist
local actors in identifying and addressing existing inequities, using
them to generalize about urban environments should be done with
caution. Meta-analysis can help identify whether social and envi-
ronmental city-level characteristics might drive within-city urban
forest cover distribution.

1.4.1. Environmental conditions
We expect for there to be more robust urban forest cover in

areas where the climate naturally supports woody vegetation
(Nowak et al.,1996). In these climates, the urban forest is comprised
of natural remnant forests, trees that have regenerated on their
own, and planted trees (one in three trees is planted, on average).
Cities in climates that do not support trees naturally, including
grasslands and deserts, rely more heavily on active tree planting
(Nowak, 2012), which requires time and financial resources. The
potential unequal effect of tree-planting programs might be
stronger in cities with non-supportive climates that rely more
heavily on tree-planting activities, particularly on public land that is
most often the target of planting programs. Several studies that
have found higher canopy cover in African American neighbor-
hoods posit that this might be a result of fence-line forests that
grow unmanaged and unwanted (Heynen et al., 2006). If this hy-
pothesis is true, we would expect to observe this relationship only
in cities that have naturally-supportive climates.
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1.4.2. Social inequity
Findings from some previous studies suggest socioeconomic

inequality may be related to environmental inequity and poor
environmental conditions and thus we examine these impacts in
this article as well. For example, Morello-Frosch and Jesdale (2006)
find both total cancer risk from air toxics and disparities in cancer
risk were higher in more segregated metropolitan areas. A recent
review by Cushing et al. (2015) found social inequity related to
degraded air and water quality across cities. In a nationwide study,
Jesdale et al. (2013) found a relationship between residential
segregation and urban land-cover and that city character-
isticsdpopulation, ecoregion, and rainfalldmediated this
relationship.

1.5. Study lens

Finally, findings might vary across the many research fields
studying urban forest cover distribution. For example, studies in
geography might be less likely to find evidence of inequity because
they employed spatial autoregressive models. Papers framed
around environmental justice might have faced pressure to shelve
non-significant findings, editors and reviewers may have rejected
insignificant results, or the studies may select study sites withmore
prevalent racial injustice or significant minority populations.

2. Material and methods

We conducted this meta-analysis as defined by Ringquist (2013)
and Borenstein et al. (2009). Meta-analysis combines the results of
multiple quantitative studies (original studies) that examined the
relationship between a particular dependent variable (urban forest
cover) and a focal predictor (race). The unit of analysis in meta-
analysis is the effect size, which is here a measure of the relation-
ship between race and urban forest cover standardized across an-
alyses, typically a regression coefficient on the covariate, race.

After an exhaustive literature search detailed in section 2.1, we
conducted our analysis in three parts. First, we employed forest
plots, a graphical illustration of the mean effect size for each
quantitative study. Second, we examined the grand unconditional
mean effect size using meta-regression, a technique similar to
Weighted Least Squares. For each study and/or effect size we also
code independent variables that we suspect influenced the
magnitude of effect sizes, drawn from the theoretical constructs in
section 1. We again used meta-regression to examine the impact of
covariates.

2.1. Literature search

We conducted a systematic search of the existing literature to
identify all original studies that had empirically tested the rela-
tionship between urban forest cover and race, including published
manuscripts, conference papers and presentations, government
reports, and white papers. To complete the search, we first refined
and operationalized our research question and identified the focal
predictors (independent variables of interest; see inclusion criteria
below). We then populated a complete list of acceptable measures
of the dependent variable urban forest cover, and generated coding
instruments. To identify appropriate studies, we (1) defined a set of
search terms that would yield original studies that met our inclu-
sion criteria and (2) identified relevant document repositories that
would contain original studies. In each repository, we conducted
the same set of 16 searchesdeach search included the word “ur-
ban,” one of four search terms related to the dependent variable
(“tree cover,” canopy, forest, and vegetation) and one of four related
to the distribution of those trees either by race or income
(socioeconomic, demographic, distribution, and equity). We con-
ducted these 16 searches in the following databases: Academic
Search Premier, American Psychological Association (APA) PsycNET,
Google Scholar, Google Books, JSTOR, National Bureau of Economic
Research database (NBER), ProQuest Dissertations and Theses
Database (PQDT), Social Science Research Network (SSRN), and
WorldCat (all documents then books only). We finished database
searches on October 3, 2016.

Each unique search returned document titles, or “hits.”We read
each title and evaluated whether the study was potentially relevant.
If so, we read the abstract and determined whether the potentially
relevant study was relevant. In cases where a search yielded fewer
than 300 hits, we reviewed the titles of all hits. In cases where a
search yielded more than 300 hits, we reviewed up to 300 hits or
searched at least 30 hits beyond the last “potentially relevant” hit,
whichever came later. If we could not determine that a study was
not relevant from the abstract, we made a conservative choice and
marked it as relevant. We then read the full text of each relevant
study to determine whether it satisfied all inclusion criteria and
was acceptable. We then coded each acceptable study.

We employed three additional strategies to identify relevant
studies. First, we emailed the first three authors of each acceptable
study with a request for any additional relevant published or un-
published studies they had authored. Second, we conducted an
ancestry and legacy search for each acceptable study; we reviewed
each study citation (ancestry) and used Google Scholar to find
studies that had cited the acceptable study (legacy). Finally, we sent
a request for studies to subscribers to the Urban Forest Listserv, a
listserv that facilitated discussion on theoretical and applied urban
forest research (managed by the University of South Florida). We
also received some unsolicited contributions from authors who
knew of our ongoing research.

2.2. Inclusion criteria

For a study to be coded as acceptable and to be included in this
meta-analysis, it must meet a predetermined set of inclusion
criteria. First, the outcome measure must have been a measure of
urban trees or vegetation (including trees, shrubs, and grass). We
excluded studies that used other measures of urban environmental
condition, including measures of herbaceous cover (grass and
shrubs only), the distribution of parks, and measures of ecosystem
services related to urban trees (e.g. atmospheric temperature, car-
bon storage). Second, the study must have had a measure of race as
a right-hand side variable. To make valid comparisons between
studies, we set a few additional restriction criteria. First, we
excluded effects that did not measure race independently of other
factors. For example, PRIZM data combined a set of neighborhood-
level socioeconomic factors into one indicator, from which we
could not isolate race.

We restricted our sample to studies that contained intra-city
variation. Studies that exclusively compared urban forest cover
between cities were excluded (for example, Heynen and Lindsey,
2003). To restrict the study to urban forests the study area must
have included an urban center (similar to a metropolitan statistical
area in the United States), though the study area could have
included some outlying areas. Studies in which the area of interest
was a larger area like a watershed, state, or country were excluded
because the area was not predominantly urban.

Studies also needed a sufficient statistical test (e.g. compared
against the distribution of t, z, c2, or F) to create an r-basedmeasure.
Finally, studies must have been available in English. Fig. 1 shows the
search for potentially relevant documents (including duplicates) to
the 42 acceptable studies used in this analysis. All numbers in Fig. 1
include data for our simultaneous search for the focal predictor



Fig. 1. Flowchart of Literature Search Process and Inter-Coder Reliability Assessments Results are from a combined search for studies that estimate the relationship between
urban forest cover and either race or income. See Gerrish and Watkins, 2017 for results of income analysis.
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income.

2.3. Study coding

From each study, we coded information about the effect size
(the relationship between our outcome and focal predictors) and
characteristics of the outcome measures, focal predictors, research
design, and more. Overall, we coded 42 acceptable studies and 396
effect sizes.

Because original studies reported effect sizes using either
Pearson's r, Spearman's r, or a regression coefficient, the relation-
ship must be standardized. As in many social sciences meta-
analyses, we chose an r-based measure, a measure rooted in Pear-
son's product-moment correlation coefficient (r). Pearson's r is
bounded between �1 and þ1 with 0 indicating no relationship
and �1 or þ1 indicating perfect linear relationships. In this study,
effects in positive space indicate inequity (larger minority pop-
ulations are associated with less urban forest canopy) and negative
numbers are associate with negative inequity (minority pop-
ulations are associated with more urban forest cover).

Some studies did not report sufficient information for us to
calculate a precise effect size (for example, studies reporting co-
efficients but no standard error). In these cases, we took several
strategies to accurately estimate the effect size. If the coefficient
was statistically significant, we used statistical significance stars to
calculate the most conservative effect size. In cases where the test-
statistic or standard error was not reported, and a coefficient was
not marked as statistically significant, we made the assumption
that the effect size was zero.

Because an r measure based on Pearson's correlation has two
problems (it is both censored and heteroskedastic), we transformed
it using the Fisher transformation to z, where z ¼ 0.5 ln[(1þr)/
(1�r)]. This transformation also made the standard error conve-
nient to calculate as 1/√(N�3). In practice, the transformation to z
has very little practical impact on the interpretation of results if z is
less than j0.4j as is the case in most social policy research. z is our
effect size. The average effect size (weighted by the standard error)
is interesting in its own right, but can also be conditioned on study-
and effect-level covariates to help explainwhy the effect size varies
in the literature. The covariates coded for this paper are detailed
below.

Although included in our searches, we excluded from this
analysis any effects for which the independent and dependent
variables were measured more than ten years apart (e.g. Boone
et al., 2010; Locke and Baine, 2015) and any effects for which the
dependent variable was a measure of change in the urban forest
cover (e.g. Heynen, 2006) over time. These studies addressed
different research questions than ours. We also could not include
coefficients from geographically weighted regressions (e.g. Landry,
2013) because they offered no global coefficient estimates.

2.4. Study site data

Most studies provided little systematic study-site information,
so we collected data from several additional data sources to
investigate the extent to which environmental and social city
characteristics drive variation. Many of the factors wemight expect
to relate to urban forest cover distribution, like history of residen-
tial segregation, historical development of the city, or total urban
forestry budget either are not available or would be extraordinarily
labor intensive to obtain for our sample. For cities in the US, we
collected information on available proxies: city population, racial
residential segregation, income inequality, and climate
classification.

For study-site analyses, we limited our sample to coefficients
from models of a single, U.S. city. Two studies included a single
geographic location with boundaries larger than a single city. In
these cases, we assigned the study site characteristics for the focal
city: Miami for Miami-Dade County, Florida (Szantoi et al., 2012,
2008); and Minneapolis for Minneapolis and St. Paul (Kerns and
Watters, 2012).

We obtained city-level racial residential segregation and racial
composition data from the Racial Residential Segregation Mea-
surement Project from the Population Studies Center at the Uni-
versity of Michigan (Farley, n.d.). We obtained income inequality
estimates from Holmes and Berube (2016a) of the Brookings
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Institute.
We obtained climate information from an updated version of

the K€oppen-Geiger climate classification map (Kottek et al., 2006a,
2006b). Kottek et al. (2006a) classified climate types using global
temperature and precipitation data from 1951 to 2000. With these
data, they replicated the calculations from the older, very
commonly used K€oppen-Geiger classification map (last updated in
1961). The climate classification system was designed with vege-
tation in mind.

We obtained a shapefile that contained the climate classification
map on a regular 0.5� latitude/longitude grid. Locations for cities
and towns in the United States were obtained from ArcGIS Online's
“USA Major Cities” layer pack (obtained 09/28/2016). In ArcMAP
10.4 we extracted the local climate classification for each city.

2.5. Covariates

Based on the potential explanations for variation in urban forest
cover discussed in section 1, we introduced a number of variables
which we used to condition the effect size. Variables were dummy
indicators, unless otherwise noted. In meta-regression, the un-
conditional intercept represents the average mean effect size. In
multivariable meta-regression we can meaningfully interpret the
intercept; the intercept is the average effect of the focal predictor
when covariates are zero. Covariates can be coded so that the
intercept represents a “best case” interpretation. Thus, to retain
intercept meaning, we coded variables in reverse such as not peer
reviewed and an absence of controls. We grouped covariates into
five categories: measures of race and ethnicity, methodological
choices, characteristics of outcome measures, publication charac-
teristics, and study site characteristics.

2.5.1. Measures of race and ethnicity
We coded a set of dummy variables to indicate how the inde-

pendent variable was measured: race classifications were Black or
African American, Hispanic or Latinx, Asian, and a variable for
Multiple Minorities (two or more racial or ethnic minority groups
orWhite population and visible minority population). Estimates for
the first three race classifications cannot be considered to be “pure”
effects because many studies included other race classifications as
covariates in the same model so the base case was not “all other
individuals.”

2.5.2. Methodological choices
The first variable we coded was an indicator variable for

whether the effect was derived from a correlation coefficient or
bivariate regression. We expected effects from correlation or
bivariate regression to be larger than the effects from multivariate
models due to confounders.

We coded no income control to indicate that the study did not
control for income. Without controlling for income, a study may
find evidence of racial disparities, when the distribution of trees
might better be explained by (omitted) income, though we know
these two factors are related.We also coded for features of the build
environment using two variables. No density control indicates an
effect size did not have a control for housing, street, or population
density and no age control indicated a study did not control for the
age of the housing stock or neighborhood. We expected effect sizes
in studies that controlled for the built environment to be smaller
than effect sizes in studies without these controls.

We coded no SAR to indicate that the authors did not control for
spatial lags nor correct for correlated spatial errors. As discussed
above, spatial autocorrelation underestimates standard errors and
might make otherwise small effects statistically significant. We
expected the studies which did not account for spatial autocorre-
lation to have larger average effect sizes.

We coded for the level of aggregation of the unit of analysis. A
larger unit potentially contains more dissimilar urban forest cover
and racial variation (Pham et al., 2017). However, larger geogra-
phies may have less measurement error compared to smaller ge-
ographies.We defined “large” geographies to be as large as or larger
than U.S. census tracts. We classified units of analysis outside of the
United States based on their relative size to U.S. Census geogra-
phies; if the size was unclear, we coded this variable missing. Sig-
nificance of this variable would suggest that estimates are sensitive
to the level of aggregation though we do not have expectations for
the sign of the coefficient.

2.5.3. Characteristics of outcome measures
We coded several characteristics of the outcome variable.

Vegetation indicated that the outcome variable measured both trees
and other vegetation. Not % cover indicated it was not measured
using a measure of percent canopy cover. We coded for whether a
study restricted its focus to private land (via parcel boundaries, for
example) or includedmixed land that is both private and public. The
comparison case was studies that only studied urban forest cover
on public land. Wewere more interested in access to the benefits of
trees than to actual land ownership, so we considered studies that
focused on land buffers along streets regardless of land ownership
to be studies of public land.

2.5.4. Publication characteristics
We coded ej lens to indicate studies whose title or abstract

included the word (in)equity, environmental justice, access or
generally expressed concern about the unequal distribution of ur-
ban forests. We coded a suite of variables to indicate the field of
study of the publication, including the most common, geography.
For published works, we used the field of study of the journal. For
dissertations, we used the field of study of the author. For other
papers, we made a judgment call based on the publishing organi-
zation or author affiliation. Non-peer-reviewed indicated a study
was not published in a peer-reviewed journal.

2.5.5. Study site characteristics
We coded study site population from original studies if reported.

When studies did not report population, we searched Google for
the city's population in the last year of urban forest cover data in
the original study. We measured population in hundreds of
thousands.

We measured racial residential segregation using the index of
dissimilarity from the Racial Residential Segregation Measurement
project from the Population Studies Center at the University of
Michigan (Farley, n.d.). The index used 2000 census tract data to
estimate the distribution of racial groups across census tracts
within a city for the largest 250 cities in the United Statese
essentially how segregated a racial group was from another racial
group. An index value of zero, the minimum, indicated no resi-
dential segregation between the two groups, and a value of 100, the
maximum, indicated absolute segregation. For example, if a city
had an index of dissimilarity for White and African American res-
idents of 54, it would mean that either 54 percent of White resi-
dents or 54 percent of African American residents would have to
move from one census tract to another to produce an even
distribution.

We collected the index of dissimilarity between White in-
dividuals and individuals from four minority groups as measured in
the U.S. Census e Black or African American, American Indian or
Alaska Native, Asian, and Hispanic. From these data, we created a
binary variable where 1 indicated a site's dissimilarity index was in
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the top quartile (top twenty five percent) of dissimilarity indices in
the University of Michigan database of 250 cities. We chose the top
quartile because our studies over-represented cities with high
residential segregation and the top quartile offered sufficient bal-
ance between 1s and 0s.

Wemeasured income inequality using the 95/20 ratiodthe ratio
of household income of the wealthiest 5 percent of households to
household income of the poorest 20 percent of households. These
estimates were calculated for the largest cities in 97 large U.S.
metropolitan areas using the 2014 American Community Survey
and obtained from Holmes and Berube (2016a). To illustrate, in
Boston in 2014, the bottom 20 percent of households earned on
average $14,942 per year and the top five percent earned $266,224
per year on average. The 95/20 ratio for Bostonwas 17.8, the highest
in the country. The ratio for the United States was 9.3 and for the
aggregated largest metro areas it was 9.7 (Holmes and Berube,
2016b). We generated a binary indicator that equaled 1 if a study
city's 95/20 ratio was lower than 9.7.

The K€oppen-Geiger climate classification uses a three-letter
code to indicate three features: main climate, precipitation, and
temperature (see http://koeppen-geiger.vu-wien.ac.at/present.
htm). The scheme identifies five main climates: equatorial, arid,
warm temperate, snow, and polar. After extracting the climate
classification for each city from the shapefile, we created a suite of
binary variables that indicated each main climate, precipitation,
and temperature code. From these, we operationalized favorable
growing conditions using a binary indicator that the climate pre-
cipitation code was humid and operationalized the alternative
(unfavorable growing conditions) using a binary indictor that the
climate code was arid. In the United States, most of the Eastern
United States is classified as Cfb, meaning the climate is “warm
temperate,” the precipitation is “fully humid,” and the tempera-
ture is “warm summer.” The southwest is mostly arid climate, with
patches of warm temperate climate. Los Angeles differs from the
Eastern U.S. only in precipitation, with the code Csb and “summer
dry” precipitation designation. Miami's climate is unlike most
other study cities: it is equatorial and its precipitation is
monsoonal.
2.6. Inter-coder reliability assessments

We conducted two inter-coder reliability assessments to eval-
uate our agreement on the acceptability of original studies and
study coding. The first inter-coder reliability assessment measured
whether the authors were similarly marking studies as acceptable
after reading the full text. In that inter-coder reliability assess-
ment, there was 100 percent agreement between the two authors
when assessing 30 studies, nine of which were deemed acceptable
by both authors. In the second inter-coder reliability assessment,
we assessed levels of agreement in coding effect sizes and several
other important details of coding effect sizes such as the coeffi-
cient, p-value and test statistic, and whether the raw coefficient
favored inequity or negative inequity. We also compared our
coding of whether data collection from aerial/satellite imagery or
an inventory as well as whether there was a control for housing
age. The two authors had agreement of 99.6 percent, the lone
difference being a typographical error (n ¼ 247). Both assessments
are considered “excellent” using typical rules of thumb. While
percent agreement is sometimes limited in its applicability, we
found that the high agreement rate obviated the need for further
analysis using Cohen's Kappa or similar measures. Fig. 1 highlights
the results of these inter-coder reliability assessments as well as
their timing in the literature search process.
2.7. Descriptive statistics

Descriptive statistics for the control variables can be found in
Table 1. We report the proportion of observations coded as 1 (the
mean), the total number of observations coded as 1 out of the 388
total effect sizes, and the total number of observations.

2.8. Forest plots

Forest plots compare the average effect size between studies,
creating a (weighted) average for each study so that all studies can
be compared directly. To combine effects within a study, we
multiplied each effect by its weight and then constructed an
average weighted effect size (and standard error). A forest plot can
also calculate the overall mean and confidence interval (as well as a
prediction interval) for all studies. This overall mean and confi-
dence interval will differ from the one found by the (more accurate)
meta-regression because forest plots employ a study-level average
rather than the individual effect-size level average, though the two
averages tend to be similar.

2.9. Meta-regression

Meta-regression was the primary tool we used to examine and
report meta-analytic results. Meta-regression allowed us to prop-
erly weight the unconditional mean effect size (the average rela-
tionship between urban forest cover and race) as well as condition
the average effect size on (mostly) binary covariates. As with binary
variables in a traditional regression analysis, these coefficients can
be interpreted as the additive effect of “turning on” the binary
variable.

Meta-regression involved a few more steps compared to ordi-
nary least squares regression. First, each effect coded from original
studies was weighted based on its sample size. This gave more
weight (or preference) to studies which were estimated more
efficiently, which muted the effects of statistical outliers from small
samples on our results. The second step adjusted for heterogeneity
of the estimates. In non-laboratory and non-experimental meta-
analyses in particular, we often believe that our effects are drawn
from a distribution of effects which are different for reasons other
than sampling error alone: a random effects framework. In this
framework, constructs such as the study location will have
important impacts on the estimated effect. A random effects esti-
mator is in opposition to using fixed effects, where the true pop-
ulation mean is fixed and effects are drawn from a distribution
around that mean. To handle heterogeneity, we included an esti-
mate of it in the effects' weights, t2 (and t). t2 is an estimate of the
dispersion of the distribution around a true effect. In other words,
there are two components of the distribution of the mean effect
sizeea distribution of the true effect (rather than a population
parameter) and sampling error. Including t2 attempted to decom-
pose those two effects. The practical impact of including t in the
weight was to place more emphasis on smaller studies than they
would receive in a fixed effects meta-regression.

We report both t and the I2 statistic. I2 is a measure of the
amount of heterogeneity of the estimate which is explained by
factors other than random sampling (Higgins and Thompson,
2002). The I2 statistic is large, roughly around .9 or 90 percent,
which is common for meta-analyses in the social sciences, but
would be highly unusual for lab experiments or randomized trials.
For each of these values of I2, the p-value of the chi-squared Q test
would be less than .001, indicating that the random effects
framework is preferable to fixed effects.

We also accounted for non-independence of effect sizes. Effects
from social science research are often not drawn from independent
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Table 1
Descriptive statistics.

Mean Total Total Obs.

Number of observations 1344.477 521,657 388
Correlation coefficient or bivariate OLS 0.454 176 388
No control for spatial error or lag 0.704 273 388
Spatial Unit of analysis is census tract or larger 0.316 122 386
Spatial unit of analysis is a parcel or a household 0.054 21 388
No control for income poverty or wealth 0.665 258 388
No control for density 0.665 258 388
No control for housing age 0.668 259 388
Outcome measure is both trees and herbaceous 0.173 67 388
Outcome measure is NOT % cover 0.209 81 388
outcome measure is tree or stem inventory 0.057 22 388
Treatment variable measures African American or Blacka 0.304 118 388
Treatment variable measures Hispanic or Latinxa 0.276 107 388
Treatment variable measures Asiana 0.119 46 388
Treatment variable measures disambiguated minoritya 0.289 112 388
Survey frame is private land only 0.160 62 388
Survey frame is mixed public/private land 0.570 221 388
Study has a focus on Environmental Justice 0.760 295 388
Discipline is Geography 0.302 117 388
Study is non-peer-reviewed 0.299 116 388
Population in 100000s 16.246 6271.113 386
Low dissimilarity index (White: African American) 0.301 102 339
Low income inequality 0.128 40 312
Arid climate (K€oppen-Geiger) 0.082 28 343
Humid climate (K€oppen-Geiger) 0.685 235 343

Notes: 388 total effect sizes. All variables, except for effect size are binary variables. Mean reports the proportion of observations coded as “1” and Total reports the total
number of observations coded as “1.” Effects derived from 40 studies with 521,657 total observations.

a Or inverse.
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samples, unlike for many meta-analyses in the sciences. Some
studies have many estimates using the same data and our sample
was no different. The largest study in our sample had 84 effects.
Because of this non-independence, we used cluster robust variance
estimators (CRVE), as employed in other recent meta-analyses
(Gerrish, 2016; Ringquist, 2013).
2.10. Meta-regression model specifications

We tested a number of meta-regression specifications to
examine our stated hypotheses. First, we estimated the uncondi-
tional mean effect size using a model with only the intercept. Next,
we estimated the unconditional mean effect size for each oper-
ationalization of race and ethnicity.

We then specified three models to test our methodological hy-
potheses. The first controlled for studies that used correlation or
bivariate OLS and for studies that did not account for spatial
autocorrelation. The intercept of this model estimated inequity for
studies with at least one control variable and that accounted for
spatial autocorrelation. The secondmodel added a variable for tract
or larger. The intercept of this model estimated inequity for models
that had at least one control variable, that accounted for spatial
autocorrelation, and that used a unit of analysis smaller than a U.S.
census tract. The third tested our hypotheses about the inclusion of
specific control variables by including indicators that a study did
not control for income, density, or neighborhood age.

We then estimated a model that controlled for outcome vari-
ables that measured both trees and herbaceous cover and outcome
measures that were not percent canopy cover. The intercept esti-
mated inequity in studies that measured percent tree cover.

Our fifth model tested our hypotheses about land ownership; it
controlled for whether a studymeasured urban forest cover only on
private land and on mixed private/public land. The intercept esti-
mated inequity on public land only. Our sixth model combined
effects of measurement and land type.

We then estimated a “best case”model (from themodels above),
in which the intercept measured inequity in studies that controlled
for income, density, and neighborhood age; that accounted for
spatial autocorrelation; that focused on public land only; and were
peer-reviewed. Given the significance of land type in this model, we
then estimated the same best case model without indicators of land
type. The models described in the previous few paragraphs can be
found in Table 3. In addition, considering the robust literature and
particular interest in questions of environmental justice in the
United States and the small number of non-US studies identified
during the literature search, we re-estimated methodology, mea-
surement, and domain models using only studies conducted in the
United States (Table 4).

A second suite of models tested our hypotheses related to study
lens and publication outlet (Table 5). We ran three bivariate meta-
regressions to test the impact of non-peer review, study lens, and
geography. We then combined ej lens and geography in one model
and then all three study features in an additional model. The
intercept of this model estimated inequity in studies that did not
have an environmental justice lens, were not published in a geog-
raphy outlet, and were peer-reviewed. In our final model in this set
we added the interaction of environmental justice and non-peer-
review. We re-estimated these models with only effects from
studies of the United States (see appendix).

Next, we examined the presence of a “city effect” in seven
models (Table 6). The first estimated the effect of city population
(demeaned). The intercept estimated inequity when city popula-
tion was at the sample mean. Then we tested whether residential
racial segregation is related to variation in residential segregation
by including indicators that a city had medium or low dissimilarity
indices between White and African American residents and White
and Hispanic/Latinx residents. The intercept estimated inequity in
cities with high residential segregation between White and African
American residents and White and Hispanic residents. In an
appendix we also tested the robustness of these results by adding
controls for the percent minority, the percent African American,
and the percent Hispanic.
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Our third study-site model combined population, residential
segregation, and income inequality measures; the intercept of this
model estimated inequity in cities with high residential segregation
between African American and White residents, high income
inequity, and when population was at the sample mean.

Four models examined whether climate influences urban forest
inequity. We estimated whether observed inequity differed be-
tween arid climates and non-arid climates and estimated whether
inequity differed between humid climates (intercept) and non-
humid climates. We then added private and mixed land to these
models to examine whether climate effects vary across types of
land ownership.

In an appendix, we re-estimated the models described above
with subsamples based on each distinct race classification. These
models illuminate whether findings were systematic across groups
or were driven by one or two particular race classifications.
2.11. Publication bias

Publication bias occurs when there is pressure to find statistical
evidence that supports a particular conclusion that result in stuff-
ing contradictory results in the file drawer and is an important
concern for results of meta-analyses. We used two tests for publi-
cation bias, one visual and one statistical.

Fig. 2 displays our visual test, a confunnel plot. The funnel shape
is formed by the standard errors from sample size, with large
studies towards the top of the plot. The shaded cones are formed by
the 90, 95, and 99 percent confidence intervals. We have graphed
both peer-reviewed and non-peer-reviewed studies on the same
plot. Black plus symbols represent peer-reviewed publications and
gray Xs represent non-peer-reviewed studies. In the absence of
publication bias, points would be fairly symmetric around the
mean. Publication bias is evident in a confunnel plot if there is an
absence of (typically) peer-reviewed studies in the lower left or
right quadrant, suggesting studies have been shelved. Aside from a
single small study that has a large positive effect (an outlier), it does
not appear that publication bias is a significant concern because
there are peer-reviewed and non-peer-reviewed studies in most
quadrants.
Fig. 2. Black plus symbols represent effect sizes from peer-reviewed publication. Gray
Xs are from non-peer-reviewed studies. Effect sizes are sorted by sample size; large
samples are reported on the top of the confunnel, small samples towards the bottom.
The shaded cones are formed by the 90, 95, and 99 percent confidence intervals for
effect sizes at the given sample size. Pluses and Xs horizontally aligned are typically
effect sizes from the same study. The vertical black line indicates the mean effect size.
Our statistical test used a dummy variable for non-peer-
reviewed studies in meta-regressions, both unconditional and
conditional on other factors.

3. Results

3.1. Forest plots

The forest plot in Fig. 3 compares the average effect size be-
tween studies. There appears to be significant heterogeneity be-
tween studies; markedly some studies find negative inequity, on
average. The values in the rightmost columns report the statistics
visualized in the body of the forest plotdthe mean effect, 95
percent confidence intervals, and study weight. The bottom dia-
mond in Fig. 3 reports the overall mean (diamond center) and
confidence interval (diamond width). Because this is a mean con-
structed from study means, the mean in the forest plot varies
slightly from the mean estimated in the meta-regressions below,
which leveraged all individual effects within studies. See the
appendix for forest plots for each unique race classification.

3.2. Meta-regression

Though forest plots are useful in comparing mean effect sizes
between studies, theymaymaskmethodological heterogeneity and
they condense many effects (from correlation or regression) into a
single average effect by study. Meta-regression, in contrast, allowed
us to examine why effects vary between and within studies.

Tables 2e6 report our meta-regression results. Tables are
organized as follows: the first column of statistics reports the un-
conditional mean effect size, which is the average relationship
between urban forest cover and race across all relevant studies.
Starting in column 2 and continuing to the right we added addi-
tional covariates as described above. Coefficient values around zero
indicate no relationship between the variable and observed urban
forest inequity. Positive coefficient values indicate the variable is
related to observing higher inequity (or observing less negative
inequity). Negative values suggest the variable is related to
observing less inequity (or more negative inequity).

Estimating the unconditional mean effect size across all studies,
we find a positive and significant relationship between race and
urban forest cover (effect size ¼ .050; s.e. ¼ .024) signaling race-
based inequity (Table 2). Effect sizes can be interpreted similarly
to Pearson's correlation coefficient, r, bounded between�1 and þ1.
Recent meta-analyses using meta-regression suggest that observed
effect sizes typically range between 0 and ±0.20 (Gerrish, 2016).
This effect size can be interpreted as small to modest in policy/
practical size. In models restricted to one race classification
(Table 2), we find significant inequity in studies that examine
Hispanic/Latinx populations (0.069) and studies that examine
Multiple Minorities together (0.106; a rather large observed effect
size in the authors' experience). We find no significant inequity for
studies that focused on African American or Asian populations.
Whenwe focused on studies in the United States, the unconditional
mean effect size is marginally larger (.051; s.e. ¼ 0.027) but no
longer statistically significant; race classification-specific model
results are consistent in U.S.-only models (see appendix).

Results present some evidence that methodological choices
explain variation across studies (Table 3Models 2, 3, and 4); none of
the coefficients of methodological variables are statistically signif-
icant, but the intercept (mean effect size) is also no longer statis-
tically significant once methodological choices are accounted for.
This suggests that studies that include at least one control variable,
account for spatial autocorrelation, and use larger units of analysis
do not find evidence of inequity. There is little evidence that



Fig. 3. Forest Plot. Notes: black center dots (horizontal bars) represent a study's mean effect size (95 percent confidence interval). The size of each gray box visualizes the study's
weight. The same statistics are reported in the right two columns. The bottom diamond reports the overall mean effect size and its standard error Berland and Hopton, 2014; Bruton
and Floyd, 2014; Davis et al., 2012; Duncan et al., 2014; Harvey and Varuzzo, 2013; Heynen, 2003; Landry and Pu, 2010; Li et al., 2015; Lovasi et al., 2013; Lowry et al., 2012; Nowak,
1991; Perkins et al., 2004; Pham et al., 2011; Phelps, 2012; Romolini et al., 2013; Schwarz et al., 2011; Shakeel and Conway, 2014; Sorrensen et al., 2015; Thornton et al., 2016; Troy
et al., 2007; Ulloa, 2015; Yngve, 2016; Zhang et al., 2008.

Table 2
Unconditional mean effect size by race classification.

All effects African American Hispanic/Latinx Asian Multiple Minority

Mean Effect Size 0.050* (0.024) �0.012 (0.046) 0.069* (0.028) 0.038 (0.021) 0.106*** (0.023)

Number of Observations 388 118 107 46 112
Number of Studies 40 20 19 5 23
R2 0.000 0.000 0.000 0.000 0.000
Adj. R2 0.000 0.000 0.000 0.000 0.000
Estimate of t 0.124 0.135 0.095 0.066 0.112
I2 0.950 0.947 0.885 0.728 0.858

Notes: *p < .05 **p < .01 ***p < .001. Coefficients are effects using Fisher's transformation of Pearson's r. They can be interpreted similarly to Pearson's r e on a scale of �1/þ1.
Cluster robust standard errors in parentheses. Positive coefficients indicate inequity.
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Table 3
Meta-regression: Methodology, measurement, domain, and best case models.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Mean effect size 0.050*
(0.024)

0.007
(0.019)

�0.004
(0.021)

�0.023
(0.027)

0.054*
(0.024)

0.097**
(0.031)

0.107**
(0.031)

0.036* (0.016) �0.021
(0.021)

Correlation coefficient or bivariate OLS 0.042
(0.042)

0.039
(0.042)

No control for spatial error or lag 0.034
(0.037)

0.035
(0.035)

0.018 (0.026) �0.015
(0.040)

Spatial unit of analysis is census tract or
larger

0.037
(0.033)

No control for income poverty or wealth 0.043
(0.024)

0.064* (0.026) 0.045
(0.025)

No control for density 0.094
(0.052)

0.035 (0.036) 0.096
(0.064)

No control for housing age �0.026
(0.036)

�0.043
(0.029)

�0.025
(0.034)

Outcome measure is trees and
herbaceous

�0.025
(0.058)

�0.008
(0.035)

Outcome measure is NOT % cover 0.004
(0.041)

�0.022
(0.034)

Survey frame is private land only �0.158*
(0.070)

�0.163*
(0.067)

�0.151**
(0.046)

Survey frame is mixed public/private
land

�0.034
(0.039)

�0.041
(0.037)

�0.030
(0.020)

Study is non-peer-reviewed 0.024 (0.023) 0.019
(0.032)

Number of Observations 388 388 386 388 388 388 388 388 388
Number of Studies 40 40 39 40 40 40 40 40 40
R2 0.000 0.051 0.069 0.126 0.005 0.147 0.151 0.237 0.129
Adj. R2 0.000 0.046 0.062 0.119 �0.000 0.143 0.142 0.223 0.118
Estimate of t 0.124 0.121 0.119 0.114 0.124 0.111 0.111 0.104 0.114
I2 0.951 0.946 0.946 0.932 0.946 0.928 0.923 0.908 0.931

Notes: *p < .05 **p < .01 ***p < .001. Coefficients are effects using Fisher's transformation of Pearson's r. They can be interpreted similarly to Pearson's r e on a scale of �1/þ1.
Cluster robust standard errors in parentheses. Positive coefficients indicate inequity.

Table 4
Meta-regression: Methodology, measurement, domain, and best case models; U.S. ONLY.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Mean effect size 0.051
(0.027)

0.004
(0.021)

�0.006
(0.022)

�0.023
(0.029)

0.054*
(0.026)

0.101**
(0.033)

0.118***
(0.028)

0.058* (0.022) �0.021
(0.023)

Correlation coefficient or bivariate OLS 0.047
(0.044)

0.043
(0.044)

No control for spatial error or lag 0.037
(0.039)

0.035
(0.038)

0.033 (0.024) �0.016
(0.044)

Spatial unit of analysis is census tract or
larger

0.046
(0.037)

No control for income poverty or wealth 0.042
(0.028)

0.079* (0.032) 0.043
(0.029)

No control for density 0.096
(0.055)

0.003 (0.033) 0.096
(0.069)

No control for housing age �0.024
(0.035)

�0.057 (0.030) �0.024
(0.034)

Outcome measure is trees and
herbaceous

�0.023
(0.078)

0.012 (0.043)

Outcome measure is NOT % cover 0.005
(0.051)

�0.045
(0.034)

Survey frame is private land only �0.181*
(0.079)

�0.200*
(0.078)

�0.199***
(0.047)

Survey frame is mixed public/private
land

�0.039
(0.042)

�0.052
(0.036)

�0.039 (0.022)

Study is non-peer-reviewed 0.031 (0.022) 0.030
(0.033)

Number of Observations 354 354 352 354 354 354 354 354 354
Number of Studies 35 35 34 35 35 35 35 35 35
R2 0.000 0.057 0.082 0.127 0.003 0.169 0.180 0.266 0.134
Adj. R2 0.000 0.052 0.074 0.120 �0.003 0.164 0.171 0.251 0.122
Estimate of t 0.129 0.125 0.122 0.118 0.129 0.113 0.114 0.105 0.118
I2 0.952 0.946 0.945 0.930 0.945 0.932 0.926 0.911 0.930

Notes: *p < .05 **p < .01 ***p < .001. Coefficients are effects using Fisher's transformation of Pearson's r. They can be interpreted similarly to Pearson's r e on a scale of �1/þ1.
Cluster robust standard errors in parentheses. Positive coefficients indicate inequity.
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Table 5
Meta-regression: Publication characteristics.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Mean effect size 0.050* (0.024) 0.037* (0.017) �0.030 (0.052) 0.043* (0.021) �0.032 (0.051) �0.041 (0.051) �0.007 (0.045)
Study is non-peer-reviewed 0.046 (0.041) 0.045 (0.030) �0.089 (0.057)
Study has a focus on Environmental Justice 0.105 (0.058) 0.104 (0.061) 0.105 (0.061) 0.056 (0.051)
Geography 0.023 (0.041) 0.010 (0.043) �0.008 (0.033) 0.003 (0.024)
EJ * not peer-reviewed 0.171* (0.064)

Number of Observations 388 388 388 388 388 388 388
Number of Studies 40 40 40 40 40 40 40
R2 0.000 0.022 0.105 0.005 0.106 0.124 0.181
Adj. R2 0.000 0.019 0.103 0.003 0.102 0.118 0.172
Estimate of t 0.124 0.124 0.115 0.124 0.115 0.114 0.109
I2 0.950 0.949 0.933 0.949 0.931 0.931 0.924

Notes: *p < .05 **p < .01 ***p < .001. Coefficients are effects using Fisher's transformation of Pearson's r. They can be interpreted similarly to Pearson's r e on a scale of �1/þ1.
Cluster robust standard errors in parentheses. Positive coefficients indicate inequity.

Table 6
Meta-regression: Study site characteristics.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Mean effect size 0.053
(0.028)

0.058** (0.018) 0.003 (0.035) 0.035* (0.013) 0.047
(0.029)

0.104***
(0.016)

0.100**
(0.034)

0.153***
(0.035)

Demeaned city population (in 100,000) �0.002**
(0.001)

�0.002*
(0.001)

Low dissimilarity index (White: African
American)

0.094***
(0.024)

0.053**
(0.017)

Low dissimilarity index (White: Hispanic/
Latinx)

0.045 (0.031)

Low income inequality 0.006 (0.027)
arid climate (K€oppen-Geiger) 0.074*

(0.028)
0.055* (0.024)

Humid climate (K€oppen-Geiger) �0.074*
(0.034)

�0.059*
(0.024)

Survey frame is private land only �0.177*
(0.083)

�0.172*
(0.083)

Survey frame is mixed public/private land �0.042
(0.042)

�0.058
(0.041)

Number of Observations 343 343 339 312 343 343 343 343
Number of Studies 32 32 32 29 32 32 32 32
R2 0.000 0.223 0.140 0.259 0.018 0.056 0.181 0.202
Adj. R2 0.000 0.221 0.135 0.252 0.015 0.053 0.174 0.195
Estimate of t 0.127 0.106 0.107 0.095 0.126 0.122 0.110 0.108
I2 0.949 0.914 0.929 0.917 0.947 0.942 0.925 0.924

Notes: *p < .05 **p < .01 ***p < .001. Coefficients are effects using Fisher's transformation of Pearson's r. They can be interpreted similarly to Pearson's r e on a scale of �1/þ1.
Cluster robust standard errors in parentheses. Positive coefficients indicate inequity.
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measurement influences study results. The coefficients on vegeta-
tion and not percent cover are not significant and the intercept is
positive and significant; studies that measure urban forest cover as
the percent tree canopy cover find significant evidence of inequity
(Table 3, Model 5).

In Table 3 Model 6 we report strong evidence that the magni-
tude of inequity varies across domain. The coefficient on private
land shows a strong negative and significant relationship with ur-
ban forest cover (�0.158). The positive and significant intercept
(0.097) reveals substantial inequity on public land. These re-
lationships are consistent and are slightly larger when we combine
measurement and domain variables in Model 7.

In our “best case” model (Table 3 Model 8), a significant coeffi-
cient on no income control suggests higher inequity in studies that
do not control for income. However, the effect of no income control
is not very robust and disappears when we remove domain from
the best case model (see Model 9). The significant effect of private
land remains in the best case model. Its significance across speci-
fications suggests that evidence of inequity on public land is robust.
The results are similar (with small changes in coefficient size) when
we focused on studies from the United States (see Table 4).
Regarding publication bias, we find no significant difference in
observed inequity between peer-reviewed and non-peer-reviewed
studies (Table 5, Model 2), studies with and without an environ-
mental justice lens (Table 5, Model 3), or between geography and
non-geography studies (Table 5, Model 4). Studies without a focus
on environmental justice found on average no significant evidence
of inequity. The same holds in models 5 and 6 that combined study
features. Adding the interaction of lens and peer-review (Model 7)
revealed significantly higher evidence of inequity in non-peer-
reviewed environmental justice studies.

Significant effects of population size, racial residential segrega-
tion, and climate suggest that the notion of a “city effect” is founded
(Table 6). We find that cities with larger populations have signifi-
cantly less urban forest cover inequity and cities with the mean
population in our sample have, on average, significant inequity in
urban forest cover (Table 6, Model 2). Contrary to our expectations,
we find consistent evidence of higher inequity in cities with lower
residential segregation of White and African American residents
and no relationship between inequity and segregation between
White and Hispanic/Latinx residents (Table 6, Model 3). These re-
sults hold when we controlled for population and income
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inequality (Table 6, Model 4) and when we controlled for city-level
demographics (see appendix). We find no significant relationship
between income inequality and race-based urban forest cover
inequity (Table 6, Model 4).

Table 6 also reports a significant relationship between climate
and inequity for both measures of climate (arid climate and humid
climate). As expected, we find evidence of significantly higher
inequity in arid cities (Model 5) and significantly lower inequity in
humid cities (Model 6), even when controlling for domain char-
acteristics (Model 7 and 8). Consistent with the results in Table 3,
the coefficient on private land is negative and significant. Signifi-
cant intercepts in Models 7 and 8 also reveal significant inequity in
urban forest cover on public land across climate specifications
(with one exception in Model 5).

3.3. Results by race classification

Tables 3e6 reveal significant study and site variables. Given the
differences in unconditional mean effect sizes across race classifi-
cations reported in Table 2, we tested our hypotheses using a sub-
sample of each race classification (results in appendix). We also
reported a forest plot for each race classification.

Thesemodels illuminatewhether the observed relationships are
driven by inequity for a specific racial group or are consistent across
groups. Insufficient sample size for Asian-only effects (effect sizes
n¼ 46; studies n ¼ 5) prevents discussion here. For the other effect
sizes, we have substantial variation for most variables (i.e. enough
1s and 0s). We make note where this is not the case.

In models with all effect sizes discussed above we find no sig-
nificant methodology variables and no significant intercepts. In
race-specific models, no control for spatial autocorrelation is pos-
itive and significant in Hispanic/Latinx only andMultipleMinorities
models and the level of aggregation is large and significant in Af-
rican American models. We find negative inequity for African
Americans when models control for income, density, and housing
age.

When we account for whether a study controls for income, we
find no evidence of inequity for any race classification, and African
American studies that control for income and do not control for
other races (i.e. they compare African Americans to the rest of the
population) find negative inequity.

Results of our race-specific models about measurement and
domain help identify particular areas of inequity. Unlike in the all-
effects models, our race-specific models find that outcome variable
measurement matters. We find significantly lower inequity for
African Americans and higher inequity for Hispanics/Latinx when
forest cover includes herbaceous cover. These two relationships
seem to cancel each other out in the all-effects model. We also find
higher inequity for African Americans when forest cover is not
measured as percent cover.

Inequity of urban forest cover on public land is present across
sub-samples, even after controlling for measurement and domain
variables. A large, negative, and significant coefficient on private
land in the African American model suggests substantial negative
inequity.

Studies with an environmental justice lens that focus on African
Americans find significant inequity, whereas studies without an
environmental justice focus find negative inequity. The interaction
term between environmental justice and peer-reviewed explains
some of the effect, but the effect of environmental justice lens re-
mains significant. These models do not control for other charac-
teristics of studies that might be correlated with study lens.

African American effects seem to be driving much of the study-
site related findings. African Americans experience higher urban
forest inequity in cities with lower residential segregation between
White and African American residents, experience significantly less
inequity in humid climates, and significantly less inequity on pri-
vate and mixed land (this last relationship is also significant in
multiple minority models). African Americans experience very
large and significant inequity on public land in non-humid climates.

4. Discussion

Using the tools of meta-analysis, our intent was to paint a more
precise and nuanced portrait of previous research that had exam-
ined urban forest distribution. We completed a comprehensive
search of the literature to identify all effect sizes that test the
relationship between urban forest cover and race, however
measured.

We find mixed evidence of race-based inequity in urban forest
cover though we find systematic inequity in the unconditional
mean effect size, and in studies that examined Hispanic/Latinx
populations and disambiguated minority populations (at least two
racial/ethnic minority groups). The results for Hispanic/Latinx and
Multiple Minority populations are robust to controls for whether
the model included other variables that indicated race or ethnicity,
measurement differences, and land type. However, evidence of
inequity disappears when we account for methodological choices
such as controlling for spatial autocorrelation or when the study
controlled for income.

Our tests for whether methodological characteristics, mea-
surement characteristics, and study site characteristics explain
variation provide interesting conditional results. We find mixed
evidence for the effect of methodological choices. In race specific
models, significant inequity disappears when models control for
spatial autocorrelation or when models control for income (In a
companion meta-analysis, we found evidence of income-based
inequity [Gerrish and Watkins, 2017]). In this paper, we find that
income appears to mediate the relationship between race and ur-
ban tree cover. Combined, our findings suggest that the story of
urban forest inequity is likely driven more by income than race.

Importantly, when we tease out locations of inequity we find
significant evidence of race-based inequity on public land. Inequity
on public land is even higher in non-humid climates; the largest
inequity in this study is in models that examine African American
access to urban forests on public land in non-humid climates. We
also find that tree cover on private land has a positive relationship
with minority population, particularly for African American resi-
dents. This meta-analysis cannot speak directly to why we observe
these differences, but our findings can speak to the relative validity
of hypotheses in the literature about why urban forest cover might
differ systematically. These hypotheses are about public service
provision, the built environment, residential preferences, legacy
effects, and social stratification.

Our finding that race-based inequity exists primarily on public
but not on private land suggests that inequity is at least partially
inequity in public service provision and in part driven by the choices
of municipal policy makers and public agents. The influence of
public policy andmunicipal agents are more constrained on private
land, where private property rights protect the individual choices of
property owners.

The built environment hypothesis expects that a positive rela-
tionship between population density and minority population
drives urban forest inequity. Our finding of negative inequity on
private land cannot be explained by this hypothesis. An economic
perspective might argue that urban vegetation reflects the prefer-
ences of urban residents, either manifest by cultivating vegetation
or by moving to areas with vegetation that align with their pref-
erences. According to this hypothesis, our finding of a positive
relationship between private land vegetation and minority
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population suggests that minority residents have a stronger pref-
erence for vegetation than other groups. Pham et al. (2012) posited
that the positive relationship between backyard trees and visible
minorities they observe in Canada might reflect preferences for
gardening among immigrants. Furthermore, if vegetation on pri-
vate land (where residents havemore direct control over their land)
reflects stronger preferences for vegetation by people of color, than
evidence of inequity on public land even more strongly suggests
inequity in public service provision. A preferences lens might also
interpret this finding to suggest that residents are compensating for
low public urban forest cover by cultivating higher urban forest
cover on their private land.

It is important to note for units of analysis larger than a parcel,
we cannot discern which residents have higher vegetation in these
neighborhoods; for example, we cannot say for sure that people of
color are compensating for low public forest cover because our
observations at the neighborhood level could be driven by their
White neighbors. This limitation is not very important when the
concern is about access to urban forests benefits that are more
diffuse (e.g. cooling, air purification) because residents of color are
still exposed to the benefits of neighboring trees. But in the case of
more localized benefits, such as aesthetics, and in the case of
interpreting causal mechanisms, it is.

In contrast, a legacy hypothesis posits that the preferences of
White city residents dictate the vegetative environment of people
of color. One form of this hypothesis posits that suburbanization
and White flight left behind large, stately street trees in neighbor-
hoods now occupied by minority residents (Boone et al., 2010),
leading to negative inequity (see Battaglia et al., 2014 for an
example of the opposite). Our finding of urban forest inequity on
public land does not support this legacy hypothesis. If this phe-
nomenon is occurring, then the influences of municipal activity and
public policy or other historical factors are even stronger.

A social stratification or luxury effect hypothesis, specific to pri-
vate land, posits that vegetation is a reflection of wealth (Hope
et al., 2003; Mennis, 2006). Wealthier residents are able to move
to areas with more vegetation, invest in vegetation on their prop-
erties, and/or attract higher public investment. We find evidence
that income explains part of, but not all of, the story of inequity.
Whenwe control for income, we observe inequity on public land in
all-effects models but not in race-specific models.

Finally, previous work has suggested that the “fence-line forest,”
comprised of nuisance trees that have grown along unmaintained
fences, might explain negative inequity on private land (Heynen
et al., 2006). This might be accompanied by vegetation growing
on abandoned lots. No original studies examined private land in
non-humid cities where we expect volunteer tree regeneration to
be relatively low, so we cannot speak directly to this hypotheses.

We cannot determine from our results which of these hypoth-
eses explain(s) inequity in urban vegetation. We can note that our
results do not support the claim that people of color prefer less
urban vegetation. They do support the claim the actions of public
agents and or city policy contribute to inequity in urban forests,
particularly on public lands.

Given its home in multiple disciplines, urban forestry research
offers a unique opportunity to assess the extent towhich the lens of
environmental justice was related to published or reported out-
comes. Collectively, we find no evidence that peer review or
discipline is related to inequity. We find some evidence that study
lens is related to observed inequity and that this effect is likely
driven by non-peer-reviewed studies. When we examine this hy-
pothesis with race-classification subsamples, we find that there are
significantly higher findings of inequity in both published and
unpublished studies with an environmental justice lens for African
American effects.
This variation may come from a number of factors; it could be
the case that there are other unaccounted for differences (in
methodology, or study site) between studies with and without an
environmental justice lens; that scholars are more likely to test
environmental justice concerns in cities where they suspect there is
inequity; or that scholars that find inequity in their results aremore
likely to then frame a narrative in their paper that focuses on
inequity. It might be the case that authors are more likely to submit
or editors aremore likely to accept publications that find significant
evidence of race-based inequity for African Americans. Our analysis
cannot tell us whether any of, or which of, these hypotheses ex-
plains the variation we observe.

In addition to the evidence that study characteristics explain
effect size variation, we find fairly strong and robust evidence of a
“city effect.” We find a relationship with population, residential
segregation, and local climate. Contrary to expectation, we find
more evidence of inequity in cities that have low or medium racial
residential segregation between White and African American res-
idents, a result that is robust to controlling for population and in-
come inequality, and to controlling for population demographics.
Consistent with our hypothesis, we also find higher inequity in
climates that are less supportive for tree success (i.e. climates that
require more time and financial resources to provide tree cover); of
the race-specific models, this relationship is strongest for African
American effects.

These study site models are not intended to identify the precise
features of a city that determine the distribution of its urban forests.
Rather, they serve as an indication that race-based inequity varies
significantly across studies because race-based inequity varies
significantly across cities.

4.1. Implications for research and practice

The results of this meta-analysis offer several implications for
research and practice. First, our results suggest instances of ineq-
uity are not consistent in magnitude across racial and ethnic mi-
nority groups and across cities. Scholars should be intentional and
transparent in the way they measure minority groups and studies
should be written and read with this limited external validity in
mind. Relatedly, when possible, studies that evaluate the distribu-
tional outcomes of urban forestry programs should first describe
the current distribution of the urban forest in the study city. This
will help the authors and readers interpret the extent to which
urban forestry programs will remedy, create, or exacerbate
inequity.

We tested the influence of methodological choices and found
mixed evidence of their importance. Controlling for income and
features of the built environment reduced observed inequity. We
find moderate evidence that controlling for income changes esti-
mates of race-based inequity, which suggests the story of urban
forest inequity is more about socioeconomic class than about
discrimination or different urban forest preferences. Scholars
should be thoughtful about the hypothesis they are interested in
answering and justify their use of control variables accordingly. If
scholars are interested in describing the lived experiences of people
of color, a control for incomemight over-control and cloud the “true
extent” of urban forest access. If scholars are interested in drivers of
inequity, or why we observe a certain urban forest distribution,
controlling for other potential explanations (like income or physical
neighborhood features) is necessary to estimate the “true effect” of
race-based discrimination on urban forest distribution. We suggest
scholars run models both with and without income to determine
the extent to which it influences their particular case.

Our mixed findings about spatial autocorrelation and level of
aggregation suggest that decisions about these methods are worth
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making carefully but are not highly consequential to a study's re-
sults. In the companion piece to this analysis, we find spatial
autocorrelation controls to significantly impact results related to
income-based urban forest inequity (Gerrish and Watkins, 2017).
Because studies often examine both race and income, we suggest
scholars use spatial autocorrelation adjustments and employ
multiple strategies as robustness checks.

That studies with an environmental justice lens find more evi-
dence of inequity supports our claim that synthesis across disci-
plines is important. Similar research methods with different results
might have different research framing e combining studies across
disciplines will yield a more complete picture of the state of the
world.

Effect of methodology, measurement, and study sites are not
consistent across racial groups, and we tended to be more accurate
in our predictions for African American effect sizes than for others.
The urban greening literature should continue to study the urban
forest experiences of Hispanic/Latinx and other minority residents
to strengthen hypotheses for these groups.

Our results yield two important findings for the practice of ur-
ban forestry. First, wide variation across studies suggests that urban
forest policy and management should be informed by city-specific
analyses of patterns of race-based inequity. These analyses are a
ripe area for collaboration between scholars and municipal and
nonprofit urban forestry practitioners. Our results also suggest that
less data-intense approaches (e.g. using NDVI) produce fairly
similar results to exhaustive approaches, suggesting that resource-
constrained cities might get a pretty accurate picture of their urban
forest with less data-intensive approaches.

Perhaps most importantly, our study finds significant evidence
of urban forest cover inequity on public land. Because the location
of urban trees is the result of a complex process that involves the
actions of multiple management agents over time (Landry, 2013;
Pham et al., 2017), patterns in today's urban forest cannot be
easily ascribed to a few explicit actions of individuals, neighbor-
hoods, or city governments. The suburbanization of cities in the
United States privileged White Americans with clean and inex-
pensive environments, eroded quality of life in dense urban areas,
and relegated African American communities to areas that were
unattractive to White city-dwellers (Pulido, 2000). Urban “revital-
ization” now threatens to do the opposite (Pearsall and
Anguelovski, 2016). Current access to the urban forest is a snap-
shot in a long process of urbanization, suburbanization, and re-
urbanization. Although observed inequity is unlikely to be the
result of intentional acts of discrimination by a few select in-
dividuals, evidence of environmental injustice and racism need not
be the result of intentional actions. Unjust outcomes from race-
neutral decision making are sufficient evidence of environmental
racism (Pulido, 2000; Sicotte, 2014). Given the evidence presented
in this paper that access to public urban canopy cover is dispro-
portionately lower for people of color, and regardless of the process
that produced that inequity, there is a clear need for municipalities
and nonprofits to evaluate the equity consequences of urban forest
policy and management. This evaluation should particularly
consider the values and preferences of individual neighborhoods in
crafting just and successful programs (Ord�o~nez Barona, 2015). A
broader set of policy tools is available for urban forest activity on
public land so while our finding of inequity on public land is
troubling, it also suggests modifying public policy and the behavior
of public agents might offer remedies to inequity.

This meta-analysis synthesizes previous quantitative literature
about the distribution of the urban forest with respect to race and
ethnicity. It offers, to date, the most comprehensive statement of
whether inequities exist and the magnitude of those inequities.
However, in the cases where we find inequity, the meta-analysis
does not tell us the cause of that inequity, nor does the analysis
illuminate (in)equity in access to the benefits of or the quality of the
urban forest. Environmental justice studies of urban forest cover
rely on the often unspoken assumption that the expected value of
ecosystem services from each unit of the urban forest is the same.
However, tree benefits vary with condition, domain, species, and
resident preferences. Evenmore fundamentally, many of the papers
in this meta-analysis rely on the assumption that trees have uni-
versal net positive value and unequal forest cover is an injustice to
be remedied. The assumptionmay not be universally true (Battaglia
et al., 2014). For example, canopy cover estimates include trees on
abandoned lots and along fences which might not be appealing or
desired by residents and damaged trees that pose risks to residents.
More attention to the quality and desirability of trees will improve
the body of research.

5. Conclusion

In this meta-analysis, we examined studies which had esti-
mated the relationship between urban trees and vegetation (the
outcome variable) and race (the focal predictor). We employed the
techniques of meta-analysisdforest plots and meta-regres-
sionsdwhich allowed us to quantitatively accumulate original
studies into standardized effects. Using meta-regression, we
conditioned the observed mean effect size on a number of theo-
retically important variables. We tested hypotheses related to
methodology, measurement, domain, publication features, and
study site characteristics.

We find evidence of race-based inequity, but that best meth-
odological practices reduce the magnitude and significance of this
evidence. We find consistent and significant urban forest inequity
on public land, suggesting a clear need for urban forest policy and
practitioners to consider the equity implications of current prac-
tices and policy.
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